??碳化硅单晶材料
??在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中的,是宽禁带半导体的。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种。目前常见应用广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。
??随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。
??SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国的Cree公司、Bandgap公司、DowDcorning公司、II-VI公司、Instrinsic公司;日本的Nippon公司、Sixon公司;芬兰的Okmetic公司;德国的SiCrystal公司,等。其中Cree公司和SiCrystal公司的市场占有率超过85%。在所有的碳化硅制备厂商中以美国Cree公司强,其碳化硅单晶材料的技术水平可代表了国际水平,预测在未来的几年里Cree公司还将在碳化硅衬底市场上独占鳌头。
??氮化镓材料
??GaN材料是1928年由Johason等人合成的一种Ⅲ-Ⅴ族化合物半导体材料,
??在大气压力下,GaN晶体一般呈六方纤锌矿结构,它在一个元胞中有4个原子,原子体积大约为GaAs的1/2;其化学性质稳定,常温下不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解;在HCl或H2下高温中呈现不稳定特性,而在N2下为稳定。GaN材料具有良好的电学特性,宽带隙(3.39eV)、高击穿电压(3×106V/cm)、高电子迁移率(室温1000cm2/V·s)、高异质结面电荷密度(1×1013cm-2)等,因而被认为是研究短波长光电子器件以及高温高频大功率器件的选材料,相对于硅、砷化镓、锗甚至碳化硅器件,GaN器件可以在更高频率、更高功率、更高温度的情况下工作。另外,氮化镓器件可以在1~110GHz范围的高频波段应用,这覆盖了移动通信、无线网络、点到点和点到多点微波通信、雷达应用等波段。
??近年来,以GaN为代表的Ⅲ族氮化物因在光电子领域和微波器件方面的应用前景而受到广泛的关注。作为一种具有独特光电属性的半导体材料,GaN的应用可以分为两个部分:凭借GaN半导体材料在高温高频、大功率工作条件下的出色性能可取代部分硅和其它化合物半导体材料;凭借GaN半导体材料宽禁带、激发蓝光的独特性质开发新的光电应用产品。目前GaN光电器件和电子器件在光学存储、激光打印、高亮度LED以及无线基站等应用领域具有明显的竞争优势,其中高亮度LED、蓝光激光器和功率晶体管是当前器件制造领域为感兴趣和关注的。
??国外在氮化镓体单晶材料研究方面起步较早,现在美国、日本和欧洲在氮化镓体单晶材料研究方面都取得了一定的成果,都出现了可以生产氮化镓体单晶材料的公司,其中以美国、日本的研究水平。
??美国有很多大学、研究机构和公司都开展了氮化镓体单晶制备技术的研究,一直处于地位,先后有TDI、Kyma、ATMI、Cree、CPI等公司成功生产出氮化镓单晶衬底。Kyma公司现在已经可以出售1英寸、2英寸、3英寸氮化镓单晶衬底,且已研制出4英寸氮化镓单晶衬底。
??日本在氮化镓衬底方面研究水平也很高,其中住友电工(SEI)和日立电线(HitachiCable)已经开始批量生产氮化镓衬底,日亚(Nichia)、Matsushita、索尼(Sony)、东芝(Toshiba)等也开展了相关研究。日立电线的氮化镓衬底,直径达2英寸,衬底上位错密度都达到1×106cm-2水平。
??欧洲氮化镓体单晶的研究主要有波兰的Top-GaN和法国的Lumilog两家公司。TopGaN生产GaN材料采用HVPE工艺,位错密度1×107cm-2,厚度0.1~2mm,面积大于400mm2。综上,国外的氮化镓体单晶衬底研究已经取得了很大进展,部分公司已经实现了氮化镓体单晶衬底的商品化,技术趋于成熟,下一步的发展方向是大尺寸、高完整性、低缺陷密度、自支撑衬底材料。
??氮化铝材料
??lN材料是Ⅲ族氮化物,具有0.7~3.4eV的直接带隙,可以广泛应用于光电子领域。与砷化镓等材料相比,覆盖的光谱带宽更大,尤其适合从深紫外到蓝光方面的应用,同时Ⅲ族氮化物具有化学稳定性好、热传导性能优良、击穿电压高、介电常数低等优点,使得Ⅲ族氮化物器件相对于硅、砷化镓、锗甚至碳化硅器件,可以在更高频率、更高功率、更高温度和恶劣环境下工作,是发展前景的一类半导体材料。
??AlN材料具有宽禁带(6.2eV),高热导率(3.3W/cm·K),且与AlGaN层晶格匹配、热膨胀系数匹配都更好,所以AlN是制作先进高功率发光器件(LED,LD)、紫外探测器以及高功率高频电子器件的理想衬底材料。
??近年来,GaN基蓝、绿光LED、LD、紫外探测器以及大功率高频HEMT器件都有了很大发展。在AlGaNHEMT器件方面,AlN与GaN材料相比有着更高的热导率,而且更容易实现半绝缘;与SiC相比,则晶格失配更小,可以大大降低器件结构中的缺陷密度,有效提高器件性能。AlN是生长Ⅲ族氮化物外延层及器件结构的理想衬底,其优点包括:与GaN有很小的晶格失配和热膨胀系数失配;化学性质相容;晶体结构相同,不出现层错层;同样有极化表面;由于有很高的稳定性并且没有其它元素存在,很少会有因衬底造成的沾污。AlN材料能够改善器件性能,提高器件档次,是电子器件发展的源动力和基石。
??目前国外在AlN单晶材料发展方面,以美国、日本的发展水平为。美国的TDI公司是目前完全掌握HVPE法制备AlN基片技术,并实现产业化的单位。TDI的AlN基片是在〈0001〉的SiC或蓝宝石衬底上淀积10~30μm的电绝缘AlN层。主要用作低缺陷电绝缘衬底,用于制作高功率的AlGaN基HEMT。目前已经有2、3、4、6英寸产品。日本的AlN技术研究单位主要有东京农工大学、三重大学、NGK公司、名城大学等,已经取得了一定成果,但还没有成熟的产品出现。另外俄罗斯的约菲所、瑞典的林雪平大学在HVPE法生长AlN方面也有一定的研究水平,俄罗斯NitrideCrystal公司也已经研制出直径达到15mm的PVTAlN单晶样品。在国内,AlN方面的研究较国外明显滞后,一些科研单位在AlNMOCVD外延生长方面,也有了初步的探索,但都没有明显的突破及成果。
??金刚石
??金刚石是碳结晶为立方晶体结构的一种材料。在这种结构中,每个碳原子以“强有力”的刚性化学键与相邻的4个碳原子相连并组成一个四面体。金刚石晶体中,碳原子半径小,因而其单位体积键能很大,使它比其他材料硬度都高,是已知材料中硬度(维氏硬度可达10400kg/mm2)。
??另外,金刚石材料还具有禁带宽度大(5.5eV);热导率高,达120W/cm·K(-190℃),一般可达20W/cm.K(20℃);传声速度,介电常数小,介电强度高等特点。金刚石集力学、电学、热学、声学、光学、耐蚀等优异性能于一身,是目前有发展前途的半导体材料。依据金刚石优良的特性,应用十分广泛,除传统的用于工具材料外,还可用于微电子、光电子、声学、传感等电子器件领域。
??氧化锌
??氧化锌(ZnO)是Ⅱ-Ⅵ族纤锌矿结构的半导体材料,禁带宽度为3.37eV;另外,其激子束缚能(60meV)比GaN(24meV)、ZnS(39meV)等材料高很多,如此高的激子束缚能使它在室温下稳定,不易被激发(室温下热离化能为26meV),降低了室温下的激射阈值,提高了ZnO材料的激发效率。基于这些特点,ZnO材料既是一种宽禁带半导体,又是一种具有优异光电性能和压电性能的多功能晶体。
??它既适合制作高效率蓝色、紫外发光和探测器等光电器件,还可用于制造气敏器件、表面声波器件、透明大功率电子器件、发光显示和太阳能电池的窗口材料以及变阻器、压电转换器等。相对于GaN,ZnO制造LED、LD更具优势,具预计,ZnO基LED和LD的亮度将是GaN基LED和LD的10倍,而价格和能耗则只有后者的1/10。
??ZnO材料以其优越的特性被广泛应用,受到各国极大关注。
??日、美、韩等发达国家已投入巨资支持ZnO材料的研究与发展,掀起世界ZnO研究热潮。据报道,日本已生长出直径达2英寸的高质量ZnO单晶;我国有采用CVT法已生长出了直径32mm和直径45mm、4mm厚的ZnO单晶。材料技术的进步同时引导和推进器件技术的进步,日本研制出基于ZnO同质PN结的电致发光LED;我国也成功制备出国际同质ZnO-LED原型器件,实现了室温下电注入发光。器件制备技术的进步,推动ZnO半导体材料实用化进程,由于其独特的优势,在国防建设和国民经济上将有很重要的应用,前景无限。